| Earth | H ₂ O | |---------------------|--| | Mars | H₂O , CO ₂ | | Asteroids | H₂O is seen in some asteroids, as is ice with a C-H | | | infrared signature | | Jupiter | | | lo | SO ₂ , SO ₃ , H ₂ S?, H ₂ O? | | Europa | H ₂ O, SO ₂ , SH, CO ₂ , O ₂ , HC, XCN, H ₂ O ₂ , H ₂ SO ₄ , | | | carbonate salt, hydrous sulfate | | Ganymede | H ₂ O, SO ₂ , SH, CO ₂ , HC, XCN, O ₂ , O ₃ , hydrated and | | | hydroxylated minerals | | Callisto | H ₂ O, SO ₂ , SH, CO ₂ , HC, XCN, hydrated and hydroxylated minerals | | Saturn | | | Mimas | H ₂ O | | Enceladus | H ₂ O | | Tethys | H ₂ O | | Dione | H₂O , C, HC, O ₃ | | Rhea | H ₂ O, HC?, O ₃ | | Hyperion | H ₂ O | | lapetus | H_2O , C, HC, H_2S ? | | Phoebe | H ₂ O, CO ₂ , CN, CH | | Titan | H_2O , $C_2(CN)_2$ | | Rings | H₂O, HC? | | Uranus | | | Miranda | H ₂ O, NH ₃ (NH ₃ hydrate?), hydroxylated silicates | | Ariel | H ₂ O, CO ₂ , OH? | | Umbriel | H ₂ O | | Titania | H ₂ O, C, HC, OH? | | Oberon | H ₂ O, C, HC, OH? | | Neptune | | | Triton | N ₂ , CH ₄ , CO, CO ₂ , H ₂ O | | Pluto | N ₂ , CH ₄ , CO, H ₂ O | | Charon | H₂O, NH₃ (NH₃ hydrate?) | | Kuiper Belt Objects | H₂O is seen on some Kuiper Belt objects; NH₃ is seen on Quaoar | | Comets | H₂O and a variety of coma (gas-phase) molecules | NOTES: HC = hydrocarbon of unknown composition; XCN = contribution from a chemical species with a C-N triple bond; SH = contribution from a chemical species with an S-H single bond